A Splice Mutation and mRNA Decay of EXT2 Provoke Hereditary Multiple Exostoses
نویسندگان
چکیده
BACKGROUND Hereditary multiple exostoses (HME) is an autosomal dominant disease. The classical paradigm of mutation screening seeks to relate alterations in the exostosin glycosyltransferase genes, EXT1 and EXT2, which are responsible for over 70% of HME cases. However, the pathological significance of the majority of these mutations is often unclear. METHODS In a Chinese family with HME, EXT1 and EXT2 genes were screened by direct sequencing. The consequence of a detected mutant was predicted by in silico analysis and confirmed by mRNA analysis. The EXT1 and EXT2 mRNA and protein levels and the HS patterns in the HME patients were compared with those in healthy controls. RESULTS A heterozygous transition (c.743+1G>A) in the EXT2 gene, which co-segregated with the HME phenotype in this family, was identified. The G residue at position +1 in intron 4 of EXT2 was predicted to be a 5' donor splice site. The mRNA analysis revealed an alternative transcript with a cryptic splice site 5 bp downstream of the wild-type site, which harbored a premature stop codon. However, the predicted truncated protein was not detected by western blot analysis. Decay of the mutant mRNA was shown by clone sequencing and quantification analysis. The corresponding downregulation of the EXT2 mRNA will contribute to the abnormal EXT1/EXT2 ratio and HS pattern that were detected in the patients with HME. CONCLUSION The heterozygous mutation c.743+1G>A in the EXT2 gene causes HME as a result of abnormal splicing, mRNA decay, and the resulting haploinsufficiency of EXT2.
منابع مشابه
Novel mutation of EXT2 identified in a large family with multiple osteochondromas
Multiple osteochondromas (MO), also known as hereditary multiple exostoses, is an autosomal dominant bone disorder. Mutations in exostosin glycosyl transferase‑1 (EXT1) and exostosin glycosyl transferase‑2 (EXT2), including missense, nonsense, frameshift and splice‑site mutations, account for up to 80% of reported cases. The proteins EXT1 and EXT2 form a hetero‑oligomeric complex that functions...
متن کاملOriginal articles Genotype-phenotype correlation in hereditary multiple exostoses
Hereditary multiple exostoses (HME) is a genetically heterogeneous autosomal dominant disorder characterised by the development of bony protuberances mainly located on the long bones. Three HME loci have been mapped to chromosomes 8q24 (EXT1), 11p11-13 (EXT2), and 19p (EXT3). The EXT1 and EXT2 genes encode glycosyltransferases involved in biosynthesis of heparan sulphate proteoglycans. Here we ...
متن کاملIdentification of a novel frameshift mutation of the EXT2 gene in a family with multiple osteochondroma
Multiple osteochondroma (MO), also known as multiple hereditary exostoses, is an autosomal dominant skeletal disorder with characteristic multiple cartilage-capped tumours (osteochondromas or exostoses) growing outward from the metaphyseal region of the long tubular bones. Mutations in exostosin glycosyltransferase 1 (EXT1) or EXT2 are the most commonly associated mutations with MO and are resp...
متن کاملPositional cloning of a gene involved in hereditary multiple exostoses.
Hereditary multiple exostosis (EXT) is an autosomal dominant condition mainly characterized by the presence of multiple exostoses on the long bones. These exostoses are benign cartilaginous tumors (enchondromata). Three different EXT loci on chromosomes 8q (EXT1), 11p (EXT2) and 19p (EXT3) have been reported, and recently the EXT1 gene was identified by positional cloning. To isolate the EXT2 g...
متن کاملMutant EXT1 in Taiwanese Patients with Multiple Hereditary Exostoses
BACKGROUND Multiple hereditary exostoses (MHE) is characterized by multiple benign projections of bone capped by cartilage, most numerous in metaphyses of long bones. HME are usually inherited in autosomal dominant mode, chief genes EXT1 and EXT2. METHODS Two MHE patients were identified from clinic and enrolled in genetic study, complete coding regions of EXT1 and EXT2, including intron/exon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014